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By Veronica Burnham

Close your eyes.

Think about the veins under your skin. Pic-
ture a branching tree stretching towards the sky. 
Imagine the surface of a pinecone. What can simi-
larities can you observe in the patterns of these im-
ages?

Go back to your mental image of the tree; 
start at the base of the trunk and work your way 
up until you reach the first branching point. Fol-
low any one of the branches, and you’ll notice that 
it, too, will eventually split apart. This branching 
continues until the limbs become too thin to sup-
port the weight of the tree’s leaves. This sort of pat-
tern is known as a fractal. Pinecones, veins, and 
tree branches, along with snowflakes and spiraled 
sea-shells, all feature distinct patterns of conforma-
tional repetition. 

The tree’s pattern of branching is recursive; 
that is, the branching is self-similar and follows the 
same basic rules at every level as each one becomes 
smaller and smaller, from trunk to bough to twig. 
Theoretically, in addition to being recursive and 
self-similar, fractals are also never-ending. Mandel-
brot’s set, one of the more popular visual fractals, is 
a pattern  that goes on forever, its stopping point 
only determined by the artist or programmer’s 
limitations. A video on YouTube, which currently 
claims to be the deepest zoom yet, magnifies the 
original image 2.1 x 10^275 times. As the video 

zooms, you begin to see repetition — within the 
larger shape are many smaller versions of the 
whole. Modeled by complex equations, fractals are 
continuous everywhere, but differentiable nowhere 
— a fun fact which can probably only be appreci-
ated by someone who has taken a calculus class. 

 Fractals are not just abstract constructions 
of the mathematical world; they are found nearly 
everywhere in nature. Beyond tree branches and 
veins, fractal-like patterns can be found everywhere 
from lightning bolts to animal coloration patterns, 
from heartbeats to some types of broccoli. They are 
even present in certain animal behaviors. Recently, 
a study conducted by David Sims of the Marine 
Biological Association revealed that a number of 
predatory fish, including multiple types of sharks, 
use fractals to hunt. More specifically, they use a 
fractal pattern of movement known as the Lévy 
flight, in which the animal rapidly changes direc-
tion a set number of times, then swims in a straight 
line for one long period of time, and then returns 
to moving jerkily. This pattern repeats indefinitely. 
The movement  is self-similar in the sense that the 
pattern would look the same at any scale, whether 
the animal is moving through 10 square feet or 
1,000. Interestingly, there is a strong correlation 
between scarcity of food and a predator’s adherence 
to the pattern: less food, more fractals. This sug-
gests that this fractalline system of hunting is pro-
grammed into the behavior of these animals, and 
has arisen because it increases efficiency in hunting 
— especially in times of prey scarcity when con-

serving energy is a priority.    
Another peculiar aspect of fractals comes from 

a 1967 study by Benoit Mandelbrot, the mathema-
tician who first coined the term fractal.  Mandel-
brot created the famous Mandelbrot set (an intri-
cate recursive pattern which is often used in fractal 
art), and was an integral figure in the early study of 
fractals. The paper, entitled How Long Is the Coast 
of Britain? Statistical Self-Similarity and Fractional 
Dimension, tackled this seemingly simple ques-
tion and got a   surprising answer. In his paper,  
Mandelbrot first explains the fractal qualities of the 
coastline’s shape. First, it is statistically likely that 
any given part of the coast is a miniature replica 
of the entire coastline. This is true at any level of 
magnification. Second, Mandelbrot declared the 
coastline of Britain to be of infinite length.

The latter sounds like a highly improbable 
claim. How can a land mass which we can physi-
cally observe and measure in its entirety have an 
infinite perimeter? This strange observation is due 
in part to the intricate shape of the coastline. Let’s 
say we start by measuring the coast in miles; we 
have a huge measuring stick that is exactly one mile 
long. We take that stick and place it end to end all 
the way around the island. A problem with accu-
racy immediately arises. If we are measuring with a 
straight stick, then each mile-long chunk of coast 
loses all the length it would gain from curvature. As 
we reduce our measuring stick — a yard, a foot, an 
inch, one tenth of an inch — our measurements 
get increasingly more accurate. However, since we 
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can theoretically shrink our measurement stick in-
finitely (via division) without ever reaching zero, 
our measurement of the coast will get infinitely 
more accurate. Thus, the coastline of Britain is in-
finite and can never be measured accurately with a 
measuring stick of any discernible length.

This phenomenon can be similarly observed 
in a common fractal known as the Koch snow-
flake. The Koch snowflake begins with an equilat-
eral triangle. For every iteration, each discernable 
side is divided in thirds. The middle third is taken 
and copied twice, forming a small equilateral tri-
angle latched onto the side of the original triangle. 
Now there are three mini triangles budding from 
each side of the original triangle (see image above 
for clarification on this process).

At first the image looks like a triangle, starts 
to become a star, and then begins to resemble a 
snowflake. With each iteration you increase the 
length of the perimeter, but once you get to a 
certain point, this increase is so small it makes no 
visible change in conformation and no discernible 
increase in area. With infinite iterations, however, 
you could magnify the shape continuously, result-
ing in an endless number of teeny-tiny sides. Thus, 
just like the coastline of Britain, this shape has an 
infinite length simply due to the fact that no mat-
ter how small of a unit you use to measure it, there 
will always be a littler one which could measure it 
more accurately. 

Theoretical mathematicians are not the only 
party who have capitalized on the unique nature of 
a fractal’s perimeter; engineers, too, have exploited 
the unique utilities of certain fractal patterns. One 
of the most striking examples of this is the use of 
fractalization to augment the function of antennas, 
especially portable ones like those found in cell 
phones and GPS. 

 Antennas serve to convert electricity into ra-
dio waves and vice versa. They are used to both 
send and receive radio waves by either radiating 
electromagnetic waves at a certain frequency or by 
intercepting these waves. Antennas transmit and 
receive information for everything from radios 
to televisions, wifi devices to cell phones. Each 
of these devices operates at a different frequency, 
which must be reflected in the length of each an-

tenna. For example, a typical radio receiving both 
AM and FM information has two antennas. AM 
radio waves typically have a frequency of 100 kHz 
while FM waves vibrate at around 100,000 kHz. 
Because all radio waves travel at the speed of light, 
higher frequency indicates shorter wavelength. The 
length of the antenna you need is thus inversely 
dependent on the frequency – the lower the fre-
quency of the wave, the larger your antenna would 
have to be. Typically, the length of the antenna has 
to be approximately half the wavelength of the ra-
dio waves—FM radio waves are typically about ten 
feet long, so about five feet of antenna would have 
to be coiled inside the metal sheath you see stick-
ing out of many radios in order for you to listen 
to WOBC. 

This phenomenon becomes a problem when 
an antenna needs to be extremely compact and 
when a device needs to receive waves at a number 
of different frequencies. As was the case with the 
Koch snowflake, fractal patterns allow shapes to 
greatly increase their perimeter while only slightly 
increasing their area. In the antenna world, this 
allows for tight packing of an extremely long an-
tenna into a very confined space. Additionally, re-
searchers have recently shown that fractal antennas 
allow for sensitivity to several different frequencies. 
It’s like having multiple antennas all wrapped up 
into one.

Beyond being practical, efficient, and found 
nearly ubiquitously throughout our natural world, 
fractals have even managed to invade the human 
psyche. In particular, fractals have recently been 
found to dictate our preferences for certain visual 
aesthetics.  This finding comes from a study con-
ducted by a physicist, Richard Taylor, and was 
found while he was taking a sabbatical in the mid-
1990s to pursue a master’s degree in art history. 
Taylor’s focus of study was one which made full 
use of his unique education – studying the math-
ematical nature of Jackson Pollack’s modernist 
drip-paintings. He studied over twenty of Pollack’s 
canvases, dating from 1943 to 1952, quantifying 
their fractal dimension. The fractal dimension is 
a measure used by mathematicians to determine 
how strictly a shape or pattern adheres to the clas-
sical definition of a fractal. For one-dimensional 

fractals (2D shapes, i.e. a branching line or Sier-
pinski triangle), the fractal dimension rating ranges 
from 0.1 to 0.9, while two-dimensional fractals 
(shapes in a 3D plane, i.e. tree branches) are rated 
between 1.1 and 1.9, with a greater number in a 
given dimension indicating closer adherence to 
classical fractal qualities. Most fractalline shapes 
observed in nature are rated between 1.2 and 1.6.

Using this information, Taylor analyzed each 
canvas at numerous locations and magnifications – 
ranging from 1/10 of an inch to the whole canvas 
– to see if fractal patterns were present on multiple
scales. Not only did Taylor find fractal dimensions,
but his findings also seem to support the idea that
Pollack knowingly implemented these self-similar
patterns. His earlier works display fractal dimen-
sions similar to shapes found in nature. Jack the
Dripper’s later paintings, however, involved more
intricate patterns which gave rise to even higher
fractal dimensions than normally seen in a one-
dimensional fraction.

Taylor then took a look at how people reacted 
to Pollock’s work in relation to its fractal qualities. 
After making a number of mock-Pollocks – some 
with a fractal pattern, some without – Taylor sur-
veyed 120 people on which paintings they pre-
ferred. A whopping 113 out of 120 preferred the 
paintings made with a fractals in mind. A study 
later conducted in collaboration with the Univer-
sity of Oregon revealed that people are most aes-
thetically pleased by fractal images  with dimen-
sions between 1.3 and 1.5, nearly the same fractal 
dimension observed in nature.

At first, the idea that our world is filled with 
complicated, recursive mathematical shapes does 
not seem intuitive. However, on closer examina-
tion, it doesn’t make sense for the world to exist 
any other way. The principle of Occam’s razor 
states that “simpler explanations are, other things 
being equal, generally better than more complex 
ones”. This philosophical approach has proven 
itself veritable time and time again in explaining 
the innermost workings of our universe. It would 
seem to fit in perfectly with the world of fractals: 
incredibly complex visual shapes and behavioral 
phenomena that can be boiled down to a set of 
simple rules.
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By Veronica Burnham

Close your eyes.

Think about the veins under your skin. Pic-
ture a branching tree stretching towards the sky. 
Imagine the surface of a pinecone. What can simi-
larities can you observe in the patterns of these im-
ages?

Go back to your mental image of the tree; 
start at the base of the trunk and work your way 
up until you reach the first branching point. Fol-
low any one of the branches, and you’ll notice that 
it, too, will eventually split apart. This branching 
continues until the limbs become too thin to sup-
port the weight of the tree’s leaves. This sort of pat-
tern is known as a fractal. Pinecones, veins, and 
tree branches, along with snowflakes and spiraled 
sea-shells, all feature distinct patterns of conforma-
tional repetition. 

The tree’s pattern of branching is recursive; 
that is, the branching is self-similar and follows the 
same basic rules at every level as each one becomes 
smaller and smaller, from trunk to bough to twig. 
Theoretically, in addition to being recursive and 
self-similar, fractals are also never-ending. Mandel-
brot’s set, one of the more popular visual fractals, is 
a pattern  that goes on forever, its stopping point 
only determined by the artist or programmer’s 
limitations. A video on YouTube, which currently 
claims to be the deepest zoom yet, magnifies the 
original image 2.1 x 10^275 times. As the video 

zooms, you begin to see repetition — within the 
larger shape are many smaller versions of the 
whole. Modeled by complex equations, fractals are 
continuous everywhere, but differentiable nowhere 
— a fun fact which can probably only be appreci-
ated by someone who has taken a calculus class. 

 Fractals are not just abstract constructions 
of the mathematical world; they are found nearly 
everywhere in nature. Beyond tree branches and 
veins, fractal-like patterns can be found everywhere 
from lightning bolts to animal coloration patterns, 
from heartbeats to some types of broccoli. They are 
even present in certain animal behaviors. Recently, 
a study conducted by David Sims of the Marine 
Biological Association revealed that a number of 
predatory fish, including multiple types of sharks, 
use fractals to hunt. More specifically, they use a 
fractal pattern of movement known as the Lévy 
flight, in which the animal rapidly changes direc-
tion a set number of times, then swims in a straight 
line for one long period of time, and then returns 
to moving jerkily. This pattern repeats indefinitely. 
The movement  is self-similar in the sense that the 
pattern would look the same at any scale, whether 
the animal is moving through 10 square feet or 
1,000. Interestingly, there is a strong correlation 
between scarcity of food and a predator’s adherence 
to the pattern: less food, more fractals. This sug-
gests that this fractalline system of hunting is pro-
grammed into the behavior of these animals, and 
has arisen because it increases efficiency in hunting 
— especially in times of prey scarcity when con-

serving energy is a priority.    
Another peculiar aspect of fractals comes from 

a 1967 study by Benoit Mandelbrot, the mathema-
tician who first coined the term fractal.  Mandel-
brot created the famous Mandelbrot set (an intri-
cate recursive pattern which is often used in fractal 
art), and was an integral figure in the early study of 
fractals. The paper, entitled How Long Is the Coast 
of Britain? Statistical Self-Similarity and Fractional 
Dimension, tackled this seemingly simple ques-
tion and got a   surprising answer. In his paper,  
Mandelbrot first explains the fractal qualities of the 
coastline’s shape. First, it is statistically likely that 
any given part of the coast is a miniature replica 
of the entire coastline. This is true at any level of 
magnification. Second, Mandelbrot declared the 
coastline of Britain to be of infinite length.

The latter sounds like a highly improbable 
claim. How can a land mass which we can physi-
cally observe and measure in its entirety have an 
infinite perimeter? This strange observation is due 
in part to the intricate shape of the coastline. Let’s 
say we start by measuring the coast in miles; we 
have a huge measuring stick that is exactly one mile 
long. We take that stick and place it end to end all 
the way around the island. A problem with accu-
racy immediately arises. If we are measuring with a 
straight stick, then each mile-long chunk of coast 
loses all the length it would gain from curvature. As 
we reduce our measuring stick — a yard, a foot, an 
inch, one tenth of an inch — our measurements 
get increasingly more accurate. However, since we 
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can theoretically shrink our measurement stick in-
finitely (via division) without ever reaching zero, 
our measurement of the coast will get infinitely 
more accurate. Thus, the coastline of Britain is in-
finite and can never be measured accurately with a 
measuring stick of any discernible length.

This phenomenon can be similarly observed 
in a common fractal known as the Koch snow-
flake. The Koch snowflake begins with an equilat-
eral triangle. For every iteration, each discernable 
side is divided in thirds. The middle third is taken 
and copied twice, forming a small equilateral tri-
angle latched onto the side of the original triangle. 
Now there are three mini triangles budding from 
each side of the original triangle (see image above 
for clarification on this process).

At first the image looks like a triangle, starts 
to become a star, and then begins to resemble a 
snowflake. With each iteration you increase the 
length of the perimeter, but once you get to a 
certain point, this increase is so small it makes no 
visible change in conformation and no discernible 
increase in area. With infinite iterations, however, 
you could magnify the shape continuously, result-
ing in an endless number of teeny-tiny sides. Thus, 
just like the coastline of Britain, this shape has an 
infinite length simply due to the fact that no mat-
ter how small of a unit you use to measure it, there 
will always be a littler one which could measure it 
more accurately. 

Theoretical mathematicians are not the only 
party who have capitalized on the unique nature of 
a fractal’s perimeter; engineers, too, have exploited 
the unique utilities of certain fractal patterns. One 
of the most striking examples of this is the use of 
fractalization to augment the function of antennas, 
especially portable ones like those found in cell 
phones and GPS. 

 Antennas serve to convert electricity into ra-
dio waves and vice versa. They are used to both 
send and receive radio waves by either radiating 
electromagnetic waves at a certain frequency or by 
intercepting these waves. Antennas transmit and 
receive information for everything from radios 
to televisions, wifi devices to cell phones. Each 
of these devices operates at a different frequency, 
which must be reflected in the length of each an-

tenna. For example, a typical radio receiving both 
AM and FM information has two antennas. AM 
radio waves typically have a frequency of 100 kHz 
while FM waves vibrate at around 100,000 kHz. 
Because all radio waves travel at the speed of light, 
higher frequency indicates shorter wavelength. The 
length of the antenna you need is thus inversely 
dependent on the frequency – the lower the fre-
quency of the wave, the larger your antenna would 
have to be. Typically, the length of the antenna has 
to be approximately half the wavelength of the ra-
dio waves—FM radio waves are typically about ten 
feet long, so about five feet of antenna would have 
to be coiled inside the metal sheath you see stick-
ing out of many radios in order for you to listen 
to WOBC. 

This phenomenon becomes a problem when 
an antenna needs to be extremely compact and 
when a device needs to receive waves at a number 
of different frequencies. As was the case with the 
Koch snowflake, fractal patterns allow shapes to 
greatly increase their perimeter while only slightly 
increasing their area. In the antenna world, this 
allows for tight packing of an extremely long an-
tenna into a very confined space. Additionally, re-
searchers have recently shown that fractal antennas 
allow for sensitivity to several different frequencies. 
It’s like having multiple antennas all wrapped up 
into one.

Beyond being practical, efficient, and found 
nearly ubiquitously throughout our natural world, 
fractals have even managed to invade the human 
psyche. In particular, fractals have recently been 
found to dictate our preferences for certain visual 
aesthetics.  This finding comes from a study con-
ducted by a physicist, Richard Taylor, and was 
found while he was taking a sabbatical in the mid-
1990s to pursue a master’s degree in art history. 
Taylor’s focus of study was one which made full 
use of his unique education – studying the math-
ematical nature of Jackson Pollack’s modernist 
drip-paintings. He studied over twenty of Pollack’s 
canvases, dating from 1943 to 1952, quantifying 
their fractal dimension. The fractal dimension is 
a measure used by mathematicians to determine 
how strictly a shape or pattern adheres to the clas-
sical definition of a fractal. For one-dimensional 

fractals (2D shapes, i.e. a branching line or Sier-
pinski triangle), the fractal dimension rating ranges 
from 0.1 to 0.9, while two-dimensional fractals 
(shapes in a 3D plane, i.e. tree branches) are rated 
between 1.1 and 1.9, with a greater number in a 
given dimension indicating closer adherence to 
classical fractal qualities. Most fractalline shapes 
observed in nature are rated between 1.2 and 1.6.

Using this information, Taylor analyzed each 
canvas at numerous locations and magnifications – 
ranging from 1/10 of an inch to the whole canvas 
– to see if fractal patterns were present on multiple 
scales. Not only did Taylor find fractal dimensions, 
but his findings also seem to support the idea that 
Pollack knowingly implemented these self-similar 
patterns. His earlier works display fractal dimen-
sions similar to shapes found in nature. Jack the 
Dripper’s later paintings, however, involved more 
intricate patterns which gave rise to even higher 
fractal dimensions than normally seen in a one-
dimensional fraction.

Taylor then took a look at how people reacted 
to Pollock’s work in relation to its fractal qualities. 
After making a number of mock-Pollocks – some 
with a fractal pattern, some without – Taylor sur-
veyed 120 people on which paintings they pre-
ferred. A whopping 113 out of 120 preferred the 
paintings made with a fractals in mind. A study 
later conducted in collaboration with the Univer-
sity of Oregon revealed that people are most aes-
thetically pleased by fractal images  with dimen-
sions between 1.3 and 1.5, nearly the same fractal 
dimension observed in nature.

At first, the idea that our world is filled with 
complicated, recursive mathematical shapes does 
not seem intuitive. However, on closer examina-
tion, it doesn’t make sense for the world to exist 
any other way. The principle of Occam’s razor 
states that “simpler explanations are, other things 
being equal, generally better than more complex 
ones”. This philosophical approach has proven 
itself veritable time and time again in explaining 
the innermost workings of our universe. It would 
seem to fit in perfectly with the world of fractals: 
incredibly complex visual shapes and behavioral 
phenomena that can be boiled down to a set of 
simple rules.
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