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Advisor: Dr. Timothy L. Troyer

Abstract
The cyclopropyl moiety is a useful structure for drug performance. In recent years, these

structures have appeared in pharmaceuticals with greater frequency given benefits such as
enhancing drug potency, increasing brain permeability, and reducting off-target defects.
Cyclopropanone acetals provide a functional source of cycloproyl groups for incorporation into
drugs and have been synthesized through the reaction of a dioxacarbene and an alkene. However,
current dioxacarbenes are limited and rely on reactive precursors. The Corey-Winter olefination
involves the conversion of a 1,2 diol to a thiocarbonate by thiocarbonyldiimidazole, followed by
the elimination of the thiocarbonate by trimethylphosphite. The dioxacarbene is a hypothesized
intermediate in the elimination, offering a dioxacarbene source to synthesize a cyclopropanone
acetal.

The aim of this study was to synthesize a series of diols, convert them to carbonate or
thiocarbonate, and compare their rates of elimination to infer the relative stability of the
dioxacarbene intermediate. To synthesize the diols, a novel, green one-pot dihydroxylation of the
alkenes of cinnamates was developed. Diols were synthesized with the addition of electron
donating and electron withdrawing groups to observe their relative ability to stabilize a carbene
intermediate. The reaction of carbonates and thiocarbonates with trimethylphosphite was
monitored by GC/MS every 15 minutes and the abundance of product was plotted over time.
Trendline slopes were compared and peliminary results of the elimination of
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one and
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione suggest the thiocarbonate eliminates faster
than the carbonate, with slopes of 1 107 and 3 106, respectively.× ×
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GENERAL INTRODUCTION

Prescription drug spending per capita is greater in the United States than any other

country.1 One of the contributing factors to the high cost of prescription drugs is the high cost

associated with drug development. Developing novel methodlogies for drug manufacturing can

contribute to lowered cost of prescriptions. Moreover, developing diverse arrays of medicinal

compounds can lead to more specialized treatment. The cyclopropyl moiety is useful for drug

performance. In recent years, cyclopropyl rings have been incorporated into pharmaceuticals

with greater frequency. The coplanarity of the carbon atoms, shorter and stronger C-C and C-H

bonds compared to alkanes, and pi-bond character of the C-C bonds contribute to the usefulness

of these structures. Benefits of incorporating cyclopropyl rings include enhancing drug potency,

reduction of off-target defects, increasing brain permeability, and increasing metabolic stability2.

Cyclopropyl groups are found in several currently marketed drugs including the antibiotic

Ciproflaxin, the antiviral Sustiva, and the asthma treatment Singulair (Figure 1).

Figure 1. Currently marketed drugs which contain a cycopropyl group.

However, cyclopropanes present drawbacks of high cost and a relatively small array of variants.

Cyclopropanone acetals are a functional and desirable alternative given the reactivity of ketones

to synthesize cyclopropanes containing substituents. This presents an avenue for creating novel

medicinal compounds.

2 Talele, T. T. J. Med. Chem. 2016 59 (19), 8712-8756
1 Kesselheim A.S.; Avorn J.; Sarpatwari A. JAMA. 2016, 32, 858-71
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The reaction of carbenes with alkenes is well known3. A study by Moss reports

successfully synthesizing a cyclopropenone acetal through the reaction of a dioxacarbene with an

olefin (scheme 1).4

Scheme 1. Moss’s synthesis of cyclopropanone acetal through a dioxacarbene and olefin.

Another study by Warkentin prepared 2,5-dihydro-1,3,4-oxadiazoles to afford a dioxacarbene.5

However, these current dioxacarbenes are limited and derived from highly reactive precursors. A

refined synthesis of a dioxacarbene is desired before proceeding in any attempt to synthesize the

cyclopropenone acetal. Developing a new synthetic methodology for the dioxacarbenes can lead

to a safer, more reliable, and more accessible procedure, potentially resulting in a larger array of

compounds.

The Corey-Winter olefination (scheme 2) involves the conversion of a vicinal diol to a

thiocarbonate by thiocarbonyldiimidazole, followed by the elimination of the thiocarbonate to an

olefin by trimethylphosphite.6 The dioxacarbene is a hypothesized intermediate in the elimination

of the thiocarbonate, based on reaction outcome and presents a potential source of a

dioxacarbene for use in the synthesis of the cyclopropenone acetal.

6 Corey, E. J.; Winter, Roland A. E. J. Am. Chem. Soc. 1963 85 (17), 2677-2678.
5 Warkentin, J. Acc. Chem. Res. 2009, 42, 205-212.

4 Moss, R.A.; Wlostowski, M.; Terpinksi, J.; Kmiecik-Lawrynowicz, G.; Krogh-Jerpersen, K. J. Am. Chem. Soc.
1987 109, 3811-3812.

3 Harvey, D.F.; Sigano, D.M. Chem. Rev. 1996, 96 (1), 271-288.
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Scheme 2. The Corey-Winter Olefination

A study by Horton found supporting evidence for the dioxacarbenene intermediate in the

Corey-Winter olefination, when using a thiocarbonate that cannot eliminate resulted in

dimerization.7 There is no record of others attempting to trap and exploit the dioxacarbene from

the Corey-Winter olefination for use.

The evidence for a carbene intermediate in the Corey-Winter olefination, as well as the

subsequent reaction of a carbene with an olefin to yield a cyclopropanone acetal is

underwhelming and circumstantial, supported only by singular examples in each case. The

Troyer group hopes to develop a reliable synthesis for a series of cyclopropanone acetals by

trapping and reacting the dioxacarbene intermediate with an alkene.

PROJECT INTRODUCTION

Previous work has focused on using 2,2-dimethyl-3-phenyl-1,3-propanediols, which

cannot eliminate, to form the dioxacarbene. The dioxacarbene has not been observed thus far.

However, phosphorus-NMR has indicated formation of the phosphonate when

trimethylphosphite is reacted with carbonates and thiocarbonates which confirms reaction of the

phosphite with the carbonate or thiocarbonate. By shifting the focus to diols that can eliminate to

form the olefin, a study of the kinetics of elimination can provide insight into the relative stability

7 Horton, D.; Tindall, C. G. J. Org. Chem. 1970, 35, 3558-3559.
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of their dioxacarbenes. Diols with slower eliminations suggest a more stable dioxacarbene that

may be better able to react with the olefin. In turn, a kinetic study will inform the design of the

carbonates, thiocarbonates, and alkenes used to attempt the synthesis of the cyclopropanone

acetal. The focus of this senior research project is to synthesize a series of 1,2-diols, convert

them to carbonates and thiocarbonates, and study the kinetics of their elimination with the

addition of trimethylphosphite.

To design and synthesize the diols, we planned to develop a new procedure for the

dihydroxylation of alkenes of methyl cinnamates. The dihydroxylation of alkenes is a

well-established procedure. The Sharpless asymmetric dihydroxylation is perhaps the most

prominent, as it is enantioselective in producing vicinial diols.8 However, the use of toxic

osmium makes it undesirable due to environmental cost. 9 The procedure has also shown to be

less effective on cis olefins. Less toxic procedures have been developed without osmium but rely

on other metals including iron10 and manganese11. In recent years, metal-free dihydroxylation

procedures have been developed. These procedures present drawbacks, however, using

peroxides, diselenides12, and iodine. Furthermore, there are still a limited number of metal-free

procedures available. We sought to develop a metal-free, green dihydroxylation of alkenes at

lower cost to synthesize the diols for this kinetic study. Additionally, we did not need our

procedure to be enantioselective. To synthesize the diols, we planned to first convert the alkene of

the methyl cinnamate to a bromohydrin by N-Bromosuccinimide in water. From there, we hoped

to develop a new synthetic methodology to hydrolyze the bromohydrin to the diol.

12 Santi, C.; Di Lorenzo, R.; Tidei, C.; Bagnoli, L.; Wirth, T. Tetrahedron 2012, 68, 10530-10535.

11 de Boer, J. W.; Browne, W. R.; Harutyunyan, S. R.; Bini, L.; Tiemersma-Wegman, T. D.; Alsters, P. L.; Hage, R.;
Feringa, B. L. Chem. Commun. 2008, 44, 3747-3749.

10 Costas, M.; Tipton, A. K.; Chen, K.; Jo, D.-H.; Que, L., Jr. J. Am. Chem. Soc. 2001, 123, 6722.
9 Wang, L.; Sharpless, K. B. J. Am. Chem. Soc. 1992, 114, 7568-7570.
8 Kolb, H. C.; VanNieuwenhze, M. S.; Sharpless, K. B. Chem. Rev. 1994, 94, 2483-2547.
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To study and attempt to control the elimination of the carbonates and thiocarbonates, the

phenyl ring can be manipulated to be either electron donating or electron withdrawing. The

electron donating or electron withdrawing character of the phenyl ring may ultimately contribute

to the relative stability of the dioxacarbene intermediate.

Figure 2. Diols of methyl cinnamates with varying electron donating and electron withdrawing groups on
the phenyl ring.

The diols for this project will be synthesized to include varying electron donating (methyl,

methoxy) and electron withdrawing (chlorine, nitro) groups attached to the phenyl ring.
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EXPERIMENTAL

Materials

All reagents were purchased from Sigma-Aldrich.

Synthesizing the methyl cinnamates

The methyl cinnamates were synthesized using the Doebner-Verlag modification of the

Knoevenagel condensation of malonic acids and a benzaldehyde.13 All cinnamates and their

derivatives were synthesized by Olivia R. Mahaffey.

Synthesizing the bromohydrin

Methyl-2-bromo-3-hydroxy-3-phenylpropanoate

To a 250-mL flask, methyl trans cinnamate (10.5813 g, 65 mmol), N-Bromosuccinimide

(11.5619 g, 65 mmol), and water (65 mL) was added. The reaction stirred at reflux for 16 hours.

The aqueous layer was extracted 3 times with ethyl acetate, and the organic layer was dried with

magnesium sulfate, gravity filtered, and condensed to afford an amber-colored oil (17.74 g,

105.4%).

13 Stabile, R. G.; Dicks, A. P. J. Chem. Ed. 2004, 81, 1488-1491.
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Data: Rf=0.77 (40% EtOAc/hexanes). 1H NMR (400 MHz, CDCl3) 7.37-7.40 (m, 6 H), 5.10 (d,

J= 8.0 Hz, 1 H), 4.40 (d, J=8.80 Hz, 1 H), 3.75 (s, 1 H).

Synthesizing the epoxide

Methyl 2-phenyloxirane-2-carboxylate

To a 250 mL flask, Methyl 3-hydroxy-2-methyl-3-phenylpropanoate (5.1023 g. 20 mmol),

potassium carbonate (2.7563 g, 20 mmol), acetonitrile (40 mL), and water (20 mL) was added.

The reaction stirred at ambient temperature for 2 hours. The aqueous layer was extracted 3 times

with ethyl acetate, dried with magnesium sulfate, gravity filtered, and condensed to afford an

amber-colored oil. The epoxide was purified by silica gel column chromatography (2.2751 g,

71.23%).

Data: Rf=0.26 (2% CH2Cl2/methanol). 1H NMR (400 MHz, CDCl3) 7.16-7.30 (m, 5 H), 4.01 (s, 1

H), 3.78 (s, 5 H), 3.42 (s, 1H).

Synthesizing the diols

Methyl 2,3-dihydroxy-3-phenylpropanoate

To a 15-mL flask, methyl trans cinnamate (0.5627 g, 3.5 mmol) was added, with

N-Bromosuccinimide (0.6245 g, 3.5 mmol) and water (3.5 mL). The reaction refluxed overnight
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for 14 hours. The reaction was cooled to ambient temperature and potassium carbonate (0.5550

g, 3.5 mmol) was added to the flask, stirring. After 2 hours, 85% phosphoric acid (1.69 mL) was

added, and the reaction stirred at ambient temperature for 2 hours. The aqueous layer was

extracted 3 times with ethyl acetate and the organic layer was dried with magnesium sulfate,

gravity filtered, and condensed to afford an amber-colored oil (0.8683 g, 127.6%). The diol was

then purified by silica gel column chromatography (0.0969 g, 14.2%).

Data: Rf=0.41 (40% EtOAc/hexanes). 1H NMR (400 MHz, CDCl3) 7.31-7.42 (m, 27 H), 5.02 (d,

J= 6.40 Hz, 5H), 4.52 (d, J= 4.0 Hz, 2 H), 3.83 (s, 9 H), 3.22 (s, 1H), 2.77 (s, 1 H).

Methyl 3-(4-methylphenyl)-2,3 dihydroxypropanoate

To a 25-mL flask, methyl (E)-3-(4-methylphenyl) acrylate (1.4528 g, 8.24 mmol) was added,

with N-Bromosuccinimide (1.4933 g, 8.24 mmol) and water (8.2 mL). The reaction refluxed

overnight for 14 hours. The reaction was cooled to ambient temperature and potassium carbonate

(1.1520 g, 8.24 mmol) was added to the flask, stirring. After 2 hours, 85% phosphoric acid (3.9

mL) was added, and the reaction stirred at ambient temperature for 2 hours. The aqueous layer

was extracted 3 times with ethyl acetate and the organic layer was dried with magnesium sulfate,

gravity filtered, and condensed to afford an amber-colored oil (1.2602 g, 72.71%). The diol was

then purified by silica gel column chromatography (0.5283 g, 30.48%).
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Syn-methyl 3-(4-methylphenyl)-2,3 dihydroxypropanoate

Data: Rf=0.44 (40% EtOAc/hexanes). 1H NMR (400 MHz, CDCl3) 7.20-7.30 (m, 6 H), 5.06 (m,

2 H), 4.38 (d, J=8.0 Hz, 2 H), 3.82 (s, 8 H), 3.04 (d, J= 5.2 Hz, 2 H), 2.35 (m, J= 6.4 Hz, 6 H);

13C NMR (100 MHz, CDCl3) ppm 169.997, 138.786, 136.069, 129.385, 126.918,77.433, 77.112,

76.795, 75.200, 53.260, 47.539, 21.316.

Methyl 3-(4-chlorophenyl)-2,3 dihydroxypropanoate

To a 15-mL flask, methyl (E)-3-(4-chlorophenyl)acrylate (0.5247 g, 3.5 mmol) was added, with

N-Bromosuccinimide (0.4776 g, 3.5 mmol) and water (3.5 mL). The reaction refluxed overnight

for 14 hours. The reaction was cooled to ambient temperature and potassium carbonate (0.4771

g, 3.5 mmol) was added to the flask, stirring. After 2 hours, 6 M phosphoric acid (1.65 mL) was

added, and the reaction stirred at ambient temperature for 2 hours. The aqueous layer was

extracted 3 times with ethyl acetate and the organic layer was dried with magnesium sulfate,

gravity filtered, and condensed to afford an amber-colored oil. The diol was purified by silica gel

column chromatography (0.0503 g, 8.13%).

Data: Rf=0.66 (40% EtOAc/hexanes).1H NMR (400 MHz, CDCl3) 7.31-7.39 (m, 48 H), 5.088 (s,

3 H), 4.70 (s, 6 H), 3.71 (s, 3 H), 3.23 (d, 2 H), 3.10 (m, 6 H).
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Synthesizing the carbonates and thiocarbonates

The carbonates/thiocarbonates were synthesized from the diols following the first step of

the Corey-Winter olefination (scheme 2).

4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one

To a 15-mL flask, 1-(4-methylphenyl)-1,2-dihydroxycinnamate (0.2178 g, 1.04 mmol), CDI

(0.1786 g, 1.04 mmol) and dichloromethane (3 mL) was added. The reaction stirred at ambient

temperature for 1 hour. The reaction was vacuum filtered through a 30 mL Kimble Buchner

funnel containing silica gel, flushing with ethyl acetate. Reactions were condensed to afford an

amber-colored oil.

Data: Rf=0.79 (40% EtOAc/hexanes). 1H NMR (400 MHz, CDCl3) 7.19-7.40 (m, 30 H), 6.03 (d,

J=19.6 Hz , 1H), 5.97 (d, J=8.8 Hz, 5 H), 3.40 (s, 4 H), 2.34 (s, 83 H).

4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione

To a 25-mL flask, 1-(4-methylphenyl)-1,2-dihydroxycinnamate (0.1541 g, 0.720 mmol), TCDI

(0.1213 g, 0.720 mmol) and dichloromethane (3 mL) was added. The reaction stirred at ambient

temperature for 1 hour. The reaction was vacuum filtered through a 30 mL Kimble Buchner
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funnel containing silica gel using ethyl acetate. Reactions were condensed to afford an

amber-colored oil.

Data: Rf=0.79 (40% EtOAc/hexanes). 1H NMR (400 MHz, CDCl3) 7.29-7.36 (m, 18 H), 5.86 (d,

J=6.0 Hz, 8 H), 5.11 (d, J=6.0 Hz, 8 H), 3.39 (s, 4 H), 2.05 (s, 35 H).

Olefination of the carbonates and thiocarbonates

This procedure was performed following the second step of the Corey-Winter olefination

(scheme 2).

Methyl (E)-3-(4-methylphenyl)acrylate

A 5 mL vial was sealed with a rubber stopper, and all air was removed using a vacuum pump.

The vial was heated to remove vapors. The vial was backfilled with nitrogen gas. To the vial,

4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one (0.0879 g, 0.372 mmol) was added by

quickly unsealing and resealing the vial. Nitrogen flow was restored before attaching a balloon to

maintain a nitrogen atmosphere. Using a syringe, P(OCH3)3 (0.375 mL) was added to the vial.

The reaction stirred in an oil bath at 70°C for 2.5 hours to afford a cloudy white solution.

Reaction progress was monitored every 15 minutes by injecting 1μL of solution into the GC/MS.

Reactions were monitored for a total of 135 minutes.

16



Methyl (E)-3-(4-methylphenyl)acrylate

A 5 mL vial was sealed with a rubber stopper, and all air was removed using a vacuum pump.

The vial was heated to remove vapors and backfilled with nitrogen gas. To the vial,

4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione (0.0945 g, 0.375 mmol) was added by

quickly unsealing and resealing the vial. Nitrogen flow was restored before attaching a balloon to

maintain a nitrogen atmosphere. Using a syringe, P(OCH3)3 (0.375 mL) was added to the vial.

The reaction stirred in an oil bath at 70°C for 2.5 hours to afford a cloudy white solution.

Reaction progress was monitored every 15 minutes by injecting 1μL of solution into the GC/MS.

Reactions were monitored for a total of 135 minutes.

NMR Spectra Collection

All 1H NMR spectra were collected using a Bruker Avance 400 MHz spectrometer at 25°C. All

13C NMR spectra were collected using a Bruker Avance 100 MHz spectrometer at 25°C.

PuriFlash Chromatography Conditions

All flash chromatography purification was performed using an Interchim puriFlash XS520 Plus.

Mobile phase was run through the column in a gradient of 15% ethyl acetate in hexanes followed

by 25% ethyl acetate in hexanes at a flow rate of 15 mL/min.

17



Gas Chromatography/Mass Spectrometry Conditions

All GC/MS spectra data were collected using an Agilent 6850 Series GC system and 5973

Network Mass Selective Detector. The initial temperature of the GC was set to 100°C with a

ramp rate of 10°C/minute to reach a final temperature of 250°C. The detector temperature was

250°C and pressure was set to 7.00 psi for a flow rate of 1.57 mL/min.

RESULTS AND DISCUSSION

Synthesis of the diols

The first steps to develop a synthesis for the diols included synthesizing the bromohydrin

on a large scale (65 mmol) to use in attempts for hydrolysis to the diol. Initial attempts to

hydrolyze the bromohydrin to diol included varying base and solvent conditions, summarized in

Table 1.

Table 1. Summary of attempts at hydrolysis of the bromohydrin.

Bromohydrin Base Solvent Temperature Time (hr)

LiOH THF/H2O Ambient 1

LiOH THF/H2O Ambient 2

H2O Reflux 2

18



LiOAc THF/H2O Ambient 2

Acetonitrile/

H2O

Reflux 1

LiOAc
after 2 hr

Acetonitrile/

H2O

Reflux 4

K2CO3 Acetonitrile/

H2O

Ambient 2

K2CO3 Acetonitrile/

H2O

Ambient 2

Reaction progress was monitored by TLC (2% dichloromethane in methanol) in all cases. When

a change in Rf from the bromohydrin was observed, reactions were stopped, condensed, and 1H

NMR was taken. We first attempted hydrolysis using lithium hydroxide in THF and water for 1

hour and observed no change from the bromohydrin. We then attempted the same reaction for 2

hours, adding an additional equivalent of lithium hydroxide after 3 hours when TLC revealed no

change. Again, no change from starting material was observed. Attempts to use water or water in

acetonitrile, both without any base present, at reflux led to no change in starting material. We

began using lithium acetate in both THF/water or acetonitrile water at ambient temperature and

found that the bromohydrin cyclized to epoxide. However, conversion was incomplete. Next
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attempts involved adding potassium carbonate in acetonitrile water at ambient temperature.

Better conversion was observed via 1H NMR. Potassium carbonate was thus used in subsequent

attempts to synthesize the epoxide.

After consistently seeing epoxide forming rather than diol, we shifted our focus to instead

hydrolyzing epoxide to yield the diol. Because converting the alkene of the methyl cinnamate to

bromohydrin and the subsequent conversion of bromohydrin to epoxide are performed in water,

we attempted to complete both reactions in one flask, without isolation between steps. We also

wanted to attempt the reaction without acetonitrile. We refluxed the methyl cinnamate for 2 hours

with N-Bromosuccinimide and potassium carbonate in water but observed no reaction occurring.

Next, we tried refluxing the methyl cinnamate with N-Bromosuccinimide in water for 2 hours

and then adding potassium carbonate for 2 hours. The epoxide was successfully synthesized. We

attempted the reaction again, this time cooling the flask to ambient temperature before adding

potassium carbonate. The epoxide was synthesized with greater percent conversion, and this

procedure was used moving forward.

After observing that we could convert the alkene of the methyl cinnamate to epoxide in

one reaction flask, we focused on hydrolyzing the epoxide to diol. We first synthesized epoxide

from the bromohydrin on a large-scale (20 mmol) using potassium carbonate in acetonitrile water

(yield: 71.23%). From there, we attempted hydrolysis of the epoxide using a series of acids and

acidic ion exchange resins (Table 2).

20



Table 2. Summary of attempts at hydrolysis of the epoxide.

Epoxide Acid/Ion
Exchange

Resin

Solvent Temperature Time

(hr)

1M HCl Ambient 1

1M HCl Acetonitrile Ambient 1

1M H3PO4 Ambient 1.5

6M H3PO4 Ambient 1.5

1M

CH3COOH

THF/H2O Ambient 1.5

6M

CH3COOH

Ambient 1.5

Dowex H2O Ambient 1.5

PPTs H2O Ambient 1.5
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AmberLite

IRC 120

H2O Ambient 1.5

AmeberLyst-

15

H2O Ambient 1.5

Initial attempts using 1M hydrochloric acid led to hydrolysis of the ester. We then shifted our

focus to acids weaker than hydrochloric acid and acidic ion exchange resins. We found that

Dowex, AmberLite-15, and phosphoric acid all afforded the diol, but 6M phosphoric gave the

most complete conversion with the greatest crude recovery.

After successfully hydrolyzing the diol from the epoxide, we attempted the reaction in

one consolidated reaction flask without isolation between steps. The methyl cinnamate was first

converted to bromohydrin by refluxing for 14 hours with N-Bromosuccinimide in water. The

reaction was cooled to ambient temperature and cyclized to epoxide by potassium carbonate.

Finally, the epoxide was hydrolyzed to diol by adding 85% phosphoric acid to achieve a final

solution concentration of 6 M, again, at ambient temperature. The diol was successfully

synthesized (Figure A3). Initially, the epoxide was synthesized from bromohydrin in a solution

of acetonitrile water. Upon comparing the one-pot procedure with and without acetonitrile, we

found that the presence of acetonitrile did not affect the formation of diol. In future syntheses,

acetonitrile was omitted from the procedure. After optimizing conditions, this synthesis was

extended to other cinnamates with variable R-groups on the phenyl ring (scheme 3).
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Scheme 3. A novel green dihydroxylation of alkenes.

After synthesis and purification, current and most optimal yields for all diols were determined.

Table 3. Percent yield of different diol derivatives. Diols were synthesized using the
procedure in scheme 3, starting with different cinnamates. All diols were purified by
silica gel column chromatography.

Diol Purified Yield (%)

14.2

8.13

30.48

The yields for all purified diols were consistently below 50% (Table 3). These data are

inconsistent, however, with anticipated yields based on crude recovery and 1H NMR. We suspect

material loss is largely occurring during silica gel column chromatography. Because of the

polarity of alcohols, the diols interact with the polar silica gel more compared to the

bromohydrin and epoxide. During a purification, the bromohydrin would elute off the column

first, followed by epoxide, diol, and then finally, succinimide. The succinimide always eluted

last, given the two carbonyls that are more polar than the alcohols. Mobile phase was run through
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on a gradient of 20% ethyl acetate in hexanes, 40% ethyl acetate in hexanes, and 60% ethyl

acetate in hexanes at a 2:2:1 volume ratio. For diols synthesized on a 10 mmol scale, we used

250 mL, 250 mL, and 125 mL of each mobile phase type, respectively. The diols began eluting in

20% ethyl acetate in hexanes, after the bromohydrin and epoxide had eluted, and stopped eluting

once 60% ethyl acetate in hexanes was added to the column. We found that once 60% ethyl

acetate in hexanes was added, only succinimide eluted. At first, we assumed that all our material

was eluting off the column because succinimide alone appeared after adding 60% ethyl acetate in

hexanes as the mobile phase. However, after consistently seeing low yields for all diol

derivatives, we began increasing the volume of both 20% ethyl acetate in hexanes and 40% ethyl

acetate in hexanes added by a factor of 1.25. After making this adjustment, we still only saw

succinimide eluting in 60% ethyl acetate in hexanes but noticed an increase in yield. This

suggests that the diols stop eluting in 60% ethyl acetate in hexanes, and a greater volume of 20%

ethyl acetate in hexanes and 40% ethyl acetate in hexanes is required all desired material has

eluted from the column.

However, even as we increased volume of mobile phase used, the greatest purified yield

of any diol observed was 30.48%, in a synthesis of the 1-(4-methylphenyl)-1,2

dihydroxycinnamate (Table 3). This yield is still inconsistent with trends in crude recovery and

percent conversion suggested by 1H NMR, suggesting material is still being lost on the column.

In addition to the polarity of the diols, they are also able to hydrogen bond with the silica gel,

contributing to their tendency to remain on the column. This hydrogen bonding is also more

extensive given the multiple alcohol groups. Furthermore, we suspect the silica gel may be

coordinating between the two alcohols. Because of the 1,2 positioning of the alcohols on the

diols, and the favorable interactions between the diols and the silica gel, the silicon can
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coordinate between the two lone pairs on the oxygens of the diols. Neither ethyl acetate nor

hexanes provide a replacement in this hydrogen bonding between the silica gel and the alcohols.

Thus, we suspect this interaction also plays a significant role in the tendency for the diols to

remain on the column.

After successfully developing the dihydroxylation procedure, we tested options for

mobile phase in column chromatography by performing thin-layer chromatography in 10% ethyl

acetate in hexanes, 20% ethyl acetate in hexanes, 40% ethyl acetate in hexanes, and 2%

dichloromethane in methanol. The TLC plates with 2% dichloromethane in methanol showed

high Rf values for all samples tested. These results guided the decision to proceed using ethyl

acetate in hexanes as mobile phase in chromatography. However, given current yield data,

attempting chromatography in 2% dichloromethane in methanol may improve purified yields. As

an alcohol, methanol will be better able to disrupt the interactions between the diols and the

silica gel. This may provide better results with yield and should be considered as a next step.

After successfully and consistently synthesizing the diols on a small scale, we attempted

a large-scale (~60 mmol) synthesis of both the 1-phenyl-1,2-dihydroxycinnamate and

1-(4-methylphenyl)-1,2 dihydroxycinnamate. After purification, we were observing several

fractions containing product of interest. Each fraction had to be subsequently repurified by either

silica gel column chromatography or flash chromatography. When purifying by flash

chromatography, we found that we could separate the two diastereomers of the diol (Figure A4).

The kinetics of the elimination of the carbonates and thiocarbonates

The carbonates and thiocarbonates were not purified before reacting with

trimethylphosphite. We were unconcerned with yield, only that enough material was present to

25



study the kinetics of elimination. Additionally, previous work showed the carbonates and

thiocarbonates were fairly unstable and prone to hydrolysis. The kinetics of the elimination of all

carbonates and thiocarbonates was monitored by GC/MS by injecting 1μL of solution every 15

minutes. Reactions were monitored for a total of135 minutes. The first carbonates and

thiocarbonates studied were those with a methyl group on the phenyl ring given the amount of

material at hand and higher purity compared to the other diols. The GC/MS of the methyl

cinnamate with a methyl on the phenyl ring revealed methyl cinnamate has a retention time of

5.30 and 11.32 minutes (Figure B.1). However, the peak at 11.32 minutes showed a sharper peak

with greater abundance and was used as a reference for the analysis of the elimination of

carbonates and thiocarbonates.

To compare the rate of elimination of the carbonates and thiocarbonates, the presence and

area of the cinnamate peaks were monitored over the course of the reaction and plotted.
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Figure 3. The kinetics of the elimination of 4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one
with the addition of trimethylphosphite. Every 15 minutes, 1 μL of reaction was injected, and the
area under the GC peaks corresponding to product was observed over time. The equation of the
trendline is y = (3 106)x – (8 107).× ×

Figure 4. The kinetics of the elimination of4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione
with the addition of trimethylphosphite. Every 15 minutes, 1 μL of reaction was injected, and the
area under the GC peaks corresponding to product was observed over time. The equation of the
trendline is y = (1 107)x – (7 107).× ×
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Comparing the slope of each trendline, the elimination of the thiocarbonate to product showed a

steeper slope, indicating a faster rate of elimination (Figure 4). Furthermore, the product of the

elimination of the thiocarbonate first appears after 45 minutes. With the carbonate, product first

appears after 60 minutes. These results further support a faster elimination with the thiocarbonate

than the carbonate. However, it is important to note the absence of a cinnamate peak at 90

minutes in the elimination of the carbonate. This is followed by minimal cinnamate detected at

105 minutes and a sharp increase in cinnamate detected at 120 minutes. It is unlikely that no

cinnamate was present in the reaction mixture at these times, given its presence before and after

these measurements. Omitting these data gives a trendline of y = (3 106)x – (9 107) for the× ×

elimination of the carbonate. This rate is still less than that of the thiocarbonate by almost a

factor of 10, further supporting a faster elimination of the thiocarbonate.

The thiocarbonates may be more reactive than the carbonates because of differences in

the partial positive character of the carbon in the carbon-sulfur or carbon-oxygen double bond.

The carbon-sulfur double bond can be more reactive than the carbon-oxygen double bond.

Despite oxygen’s stronger electronegativity, sulfur has a larger atomic radius. The electrons in its

valence are farther from the positively charged nucleus and thus more available to react with the

trimethyphosphite. The GC/MS data of the reactions also shows numerous peaks indicating the

formation of tangential products. This is likely a result of high temperatures. Monitoring reaction

progress by 1H NMR may provide an alternative method for observing rates of elimination

without generating thermal products.
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CONCLUSIONS AND FUTURE WORK

To study the rate of the elimination of the carbonates and thiocarbonates synthesized from

various diols, we developed a novel, green, one-pot procedure for the dihydroxylation of alkenes.

The alkene of a methyl cinnamate is converted to bromohydrin by refluxing for 14 hours with

N-Bromosuccinimide in water. The bromohydrin is then cyclized to epoxide by adding potassium

carbonate for 2 hours at ambient temperature. Finally, the epoxide is hydrolyzed to diol with the

addition of 85% phosphoric acid for 2 hours at ambient temperature. This procedure represents

an unprecedented, non-enatioselective dihydroxylation of alkenes

Preliminary data of the elimination of the carbonates and thiocarbonates indicates the

thiocarbonate eliminating faster than the carbonate. Through monitoring the reaction of

4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one versus 4-methoxy-5-(4-methylphenyl)-

1,3-dioxolan-2-thione with the addition of trimethylphosphite, 4-methoxy-5-(4-methylphenyl)-

1,3-dioxolan-2-thione showed a faster onset of elimination, with product detected after 45

minutes. Furthermore, comparing the rates of elimination by appearance of product over time,

the thicoarbonate displayed a faster rate of elimination compared to the carbonate with trendline

slopes of 1 107 and 3 106, respectively.× ×

Future work includes optimizing chromatography conditions for purification and

synthesizing all diol derivatives. Throughout this project, we were consistently seeing yields

under 50% (Table 3). Performing silica gel column chromatography using 2% dichloromethane

in methanol as the mobile phase may disrupt the interactions between the diols and the silica gel.

Thus, potentially leading to a decrease in material loss. Furthermore, flash chromatography can

be used to separate and collect data on both diastereomers of the diols. After optimizing
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purification technique, the one-pot synthesis of the diols can be extended to include all diol

derivatives.

After synthesizing the full series of diol derivatives with more optimal purity, the diols

can be converted to both carbonate and thiocarbonate. From there, the kinetics of their

elimination with the addition of trimethylphosphite can be studied by GC/MS. By conducting

multiple analyses for each diol derivative, reaction evolution can be compared to infer the

relative stability of the dioxacarbene intermediate in each case. In addition to studying the

appearance of product over time, the disappearance of the carbonates and thiocarbonates can also

be studied to follow reaction progress. Once the more stable dioxacarbenes are identified, these

molecules can be tested as a dioxacarbene source in the synthesis of the cyclopropenone acetals.

Furthermore, the carbonates and thiocarbonates appear to have higher thermal reactivity, based

on the appearance of tangential product formation on GC/MS spectra. To avoid formation of

unintended product, reactions may also be monitored by 1H NMR. To do so, the carbonates and

thiocarbonates can be reacted with trimethylphosphite, and 1H NMR samples can be taken every

15 minutes to follow reaction progress.
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APPENDICES

Appendix A: NMR spectra

Figure A1. 1H NMR spectrum of the methyl-2-bromo-3-hydroxy-3-phenylpropanoate.
Spectrum collected using a Bruker Avance 400 MHz spectrometer at 25°C.

Figure A2. 1H NMR spectrum of the methyl 2-phenyloxirane-2-carboxylate. Spectrum
collected using a Bruker Avance 400 MHz spectrometer at 25°C.
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Figure A3. 1H NMR spectrum of the methyl 2,3-dihydroxy-3-phenylpropanoate.
Spectrum collected using a Bruker Avance 400 MHz spectrometer at 25°C.

Figure A4. 1H NMR spectrum of the syn-methyl 3-(4-methylphenyl)-2,3
dihydroxypropanoate. Spectrum collected using a Bruker Avance 400 MHz spectrometer
at 25°C.
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Figure A5. 13C NMR spectrum of the syn-methyl 3-(4-methylphenyl)-2,3
dihydroxypropanoate. Spectrum collected using a Bruker Avance 100 MHz spectrometer
at 25°C.

Figure A6. 1H NMR spectrum of the methyl 3-(4-chlorophenyl)-2,3
dihydroxypropanoate . Spectrum collected using a Bruker Avance 100 MHz spectrometer
at 25°C.

34



Figure A7. 1H NMR spectrum of the 4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one.
Spectrum collected using a Bruker Avance 100 MHz spectrometer at 25°C.

Figure A8. 13C NMR spectrum of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one. Spectrum collected using a Bruker
Avance 100 MHz spectrometer at 25°C.
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Figure A9. 1H NMR spectrum of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione. Spectrum collected using a Bruker
Avance 100 MHz spectrometer at 25°C.

Figure A10. 12C NMR spectrum of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione. Spectrum collected using a Bruker
Avance 100 MHz spectrometer at 25°C.
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Appendix B: Gas Chromatography/MassSpectrometry

Figure B.1 Gas chromatography/mass spectrometry spectra of the
1-(4-methylphenyl)-cinnamate. Spectra collected using an Agilent 6850 Series GC system and
5973 Network Mass Selective Detector.
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Figure B2. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one after the addition of trimethylphosphite.
Spectra collected after 15 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.

Figure B3. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one after the addition of trimethylphosphite.
Spectra collected after 30 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.
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Figure B4. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one after the addition of trimethylphosphite.
Spectra collected after 45 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.

Figure B5. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one after the addition of trimethylphosphite.
Spectra collected after 60 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.
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Figure B6. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one after the addition of trimethylphosphite.
Spectra collected after 75 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.

Figure B7. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one after the addition of trimethylphosphite.
Spectra collected after 90 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.
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Figure B8. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one after the addition of trimethylphosphite.
Spectra collected after 105 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.

Figure B9. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one after the addition of trimethylphosphite.
Spectra collected after 120 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.
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Figure B10. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-one after the addition of trimethylphosphite.
Spectra collected after 135 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.

Figure B11. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione after the addition of trimethylphosphite.
Spectra collected after 15 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.
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Figure B12. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione after the addition of trimethylphosphite.
Spectra collected after 30 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.

Figure B13. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione after the addition of trimethylphosphite.
Spectra collected after 45 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.
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Figure B14. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione after the addition of trimethylphosphite.
Spectra collected after 60 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.

Figure B15. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione after the addition of trimethylphosphite.
Spectra collected after 75 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.
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Figure B16. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione after the addition of trimethylphosphite.
Spectra collected after 90 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.

Figure B17. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione after the addition of trimethylphosphite.
Spectra collected after 105 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.
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Figure B18. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione after the addition of trimethylphosphite.
Spectra collected after 120 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.

Figure B19. Gas chromatography spectra of the elimination of the
4-methoxy-5-(4-methylphenyl)-1,3-dioxolan-2-thione after the addition of trimethylphosphite.
Spectra collected after 135 minutes using an Agilent 6850 Series GC system and 5973 Network
Mass Selective Detector.
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